bt.sturrock.2020.Rd
The expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered the California river system is quantified and management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability.
bt.sturrock.2020
The data frame 16,463 × 12 contains the following columns:
sample_id | character | sample identifier |
asn | integer | numbers represent the agency id given to each fish |
natal_region | character | natal region |
otolith_radius_um | numeric | otolith radius (um) |
otolith_87sr86sr | numeric | otolith strontium isotope (Sr87/Sr86) values |
se2 | numeric | otolith strontium isotope (Sr87/Sr86) standard error |
sr_v | numeric | srv |
outmigration_year | integer | year of out-migration |
capture_fl_cm | numeric | fish fork length of captured |
capture_age | integer | fish age of captured |
sex | character | fish sex(male or female) |
cwt_no | integer | fish analyzed blind to validate natal assignment accuracy |
The dataset contains natal otolith Sr87/Sr86 values was used to predict provenance of the spawning adults using the methods described in (Barnett-Johnson et al. 2008, Sturrock et al. 2015).
Instrument: LA-ICP-MS (laser ablation-inductively coupled plasma mass spectrometry)
Rachel, B. J., Pearson, T. E., Ramos, F. C., Grimes, C. B., & Bruce MacFarlane, R. (2008). Tracking natal origins of salmon using isotopes, otoliths, and landscape geology. Limnology and Oceanography, 53(4), 1633-1642.
Sturrock, A. M., Carlson, S. M., Wikert, J. D., Heyne, T., Nusslé, S., Merz, J. E., ... & Johnson, R. C. (2020). Unnatural selection of salmon life histories in a modified riverscape. Global Change Biology, 26(3), 1235-1247.
https://doi.org/10.1111/gcb.14896
Sturrock, A. M., Wikert, J. D., Heyne, T., Mesick, C., Hubbard, A. E., Hinkelman, T. M., ... & Johnson, R. C. (2015). Reconstructing the migratory behavior and long-term survivorship of juvenile Chinook salmon under contrasting hydrologic regimes. PLoS One, 10(5), e0122380.
Data availability are available at https://doi.org/10.5061/dryad.73n5tb2ss
Traversing the paper's information via Semantic Scholar ID af6fc0e877a33843d232372c7f038542e5621a1d
using S2miner package
otolith, stable isotope, Sr8786
### copy data into 'dat'
dat <- bt.sturrock.2020
tibble::tibble(dat)
#> # A tibble: 16,463 × 12
#> sample_id asn natal_region otolith_radius_um otolith_87sr86sr se2 sr_v outmigration_year
#> <chr> <int> <chr> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 SR11234 11234 "" 30.7 0.708 0.0003 3.45 2000
#> 2 SR11234 11234 "" 75.3 0.708 0.000178 3.03 2000
#> 3 SR11234 11234 "" 125. 0.708 0.000108 3.30 2000
#> 4 SR11234 11234 "" 177. 0.707 0.000088 3.98 2000
#> 5 SR11234 11234 "" 229. 0.707 0.000116 3.37 2000
#> 6 SR11234 11234 "" 276. 0.707 0.00007 3.79 2000
#> 7 SR11234 11234 "y" 324. 0.707 0.000078 3.87 2000
#> 8 SR11234 11234 "y" 376. 0.708 0.000188 4.01 2000
#> 9 SR11234 11234 "y" 423. 0.708 0.000196 3.84 2000
#> 10 SR11234 11234 "" 470. 0.709 0.00017 3.78 2000
#> # ℹ 16,453 more rows
#> # ℹ 4 more variables: capture_fl_cm <int>, capture_age <int>, sex <chr>, cwt_no <int>
if (FALSE) {
### loading packages
library(dplyr)
library(ggplot2)
### Sr8786 profile figure
ggplot(data = dat,aes(otolith_radius_um, otolith_87Sr86Sr))+
geom_line(aes(col = sex),show.legend = F,linewidth = 0.02, na.rm = T)+
facet_grid(.~ sex)+
labs(
x = expression(paste("Otolith radius (", mu, "m)", sep = "")),
y = expression(paste(
{}^"87",
"Sr/",
{}^"86",
"Sr"
))
)+
theme_bw() +
theme(
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
text = element_text(size = 10), legend.title = element_blank(),
plot.title = element_text(face = "bold")
)
}